Activation of the Abl tyrosine kinase in vivo by Src homology 3 domains from the Src homology 2/Src homology 3 adaptor Nck.
نویسندگان
چکیده
The nonreceptor tyrosine kinase c-Abl is tightly regulated in vivo, but the mechanisms that normally repress its activity are not well understood. We find that a construct encoding the first two Src homology 3 (SH3) domains of the Src homology 2/SH3 adaptor protein Nck can activate c-Abl in human 293T cells. A myristoylated Nck SH3 domain construct, which is expected to localize to membranes, potently activated Abl when expressed at low levels. An unmyristoylated Nck SH3 domain construct, which localizes to the cytosol and nucleus, also activated Abl but only at high levels of expression. Activation by both myristoylated and unmyristoylated Nck constructs required the C terminus of Abl; a C-terminally truncated form of Abl was not activated, although this construct could still be activated by deletion of its SH3 domain. Activation did not require the major binding sites in the Abl C terminus for Nck SH3 domains, however, suggesting that the mechanism of activation does not require direct binding to the C terminus. Activation of c-Abl by Nck SH3 domains provides a robust experimental system for analyzing the mechanisms that normally repress Abl activity and how that normal regulation can be perturbed.
منابع مشابه
Activation of Pak by membrane localization mediated by an SH3 domain from the adaptor protein Nck
BACKGROUND The adaptor protein Nck consists of three Src homology 3 (SH3) domains followed by one SH2 domain. Like the Grb2 adaptor protein, which is known to couple receptor tyrosine kinases to the small GTPase Ras, Nck is presumed to bind to tyrosine-phosphorylated proteins using its SH2 domain and to downstream effector proteins using its SH3 domain. Little is known, however, about the speci...
متن کاملNck adaptor proteins link Tks5 to invadopodia actin regulation and ECM degradation.
Invadopodia are actin-based projections enriched with proteases, which invasive cancer cells use to degrade the extracellular matrix (ECM). The Phox homology (PX)-Src homology (SH)3 domain adaptor protein Tks5 (also known as SH3PXD2A) cooperates with Src tyrosine kinase to promote invadopodia formation but the underlying pathway is not clear. Here we show that Src phosphorylates Tks5 at Y557, i...
متن کاملPhosphoinositide 3-kinase-dependent phosphorylation of the dual adaptor for phosphotyrosine and 3-phosphoinositides by the Src family of tyrosine kinase.
We recently identified a novel adaptor protein, termed dual adaptor for phosphotyrosine and 3-phosphoinositides (DAPP1), that possesses a Src homology (SH2) domain and a pleckstrin homology (PH) domain. DAPP1 exhibits a high-affinity interaction with PtdIns(3,4,5)P(3) and PtdIns(3,4)P(2), which bind to the PH domain. In the present study we show that when DAPP1 is expressed in HEK-293 cells, th...
متن کاملSrc homology 3 domain-dependent interaction of Nck-2 with insulin receptor substrate-1.
Insulin receptor substrate-1 (IRS-1) is a multi-domain protein that mediates signal transduction from receptors for insulin and other growth factors to a variety of downstream molecules through both tyrosine-phosphorylation-dependent and -independent interactions. While the tyrosine-phosphorylation-dependent interactions mediated by IRS-1 have been well characterized, the molecular basis underl...
متن کاملNck and phosphatidylinositol 4,5-bisphosphate synergistically activate actin polymerization through the N-WASP-Arp2/3 pathway.
The Wiskott-Aldrich syndrome protein (WASP) and its relative neural WASP (N-WASP) regulate the nucleation of actin filaments through their interaction with the Arp2/3 complex and are regulated in turn by binding to GTP-bound Cdc42 and phosphatidylinositol 4,5-bisphosphate. The Nck Src homology (SH) 2/3 adaptor binds via its SH3 domains to a proline-rich region on WASP and N-WASP and has been im...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 274 39 شماره
صفحات -
تاریخ انتشار 1999